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Abstract 

 

The winter storms in North America and Europe are responsible for the majority of the 

natural catastrophe insured losses. This study analyzes the effectiveness of insurers hedging 

against the winter storm risk in terms of asset (catastrophe derivatives), liability (catastrophe 

bonds), and equity (catastrophe equity puts) risk management perspectives. The 

corresponding accounting procedures are designed for the insurers with different hedging 

strategies. The cash flows are simulated according to these accounting procedures under 

different loss models. The findings of our study indicate that the Cox-Ingersoll-Ross model 

(Cox et al., 1985) is the better-fitting model for the insured storm losses in North America and 

Europe. The numerical analysis results of the financial performance show that our suggested 

hedging strategies are effective based on the long-term positive profit and the improvement in 

the insolvency ratios. The insurance premiums for different terms are analyzed to find the 

appropriate term with the less volatile premiums. The conclusions of this study provide the 

insurers with a more diversified portfolio under the catastrophe risk management.  

 
Keywords: Catastrophe Derivatives, Catastrophe Bonds, Catastrophe Equity Puts, Catastrophe 
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1. Introduction 

Severe convective storms can produce strong tornados, large hails, heavy 

snowfalls, thunders and lightings, icy winds, and flash floods. According to the Sigma 

data from Swiss Re 2015, the insured losses from the global natural catastrophes and 

the severe convective storms between 1990 and 2014 grew at the average annual rates 

of 7.7% and 9.0%, respectively. As shown in Figure 1, the proportion of the insured 

losses from these storms is estimated at over 50% of the total natural catastrophe 

insured losses for the period of 2000-2014. In 2014, catastrophe-related losses in North 

America were primarily caused by the convective winter storms. In Europe, the insured 

losses totaling USD 6.6 billion in 2014 primarily also resulted from the convective 

storms and heavy precipitation.  

[Insert Figure 1 here] 

Reinsurance is a traditional form of asset hedging for the insurers. However, its 

use involves significant transaction costs, moral hazard, and credit risk. When a 

particularly large catastrophic event occurs, these risks become more serious. Corporate 

demands for more effective hedging strategies are not satisfied with the traditional 

insurance policies due to the insurance capacity constraints in the insurance and 

reinsurance markets. The catastrophe derivatives in the capital market are written on 

the loss-related indexes or triggers tied to some indexes such as the Property Claim 

Services (PCS) Catastrophe Loss Indexes. These types of derivatives can be used to 

reduce transaction costs, moral hazard, and credit risk significantly, but will incur basis 

risk instead. Because the weather-related events occur frequently and severely, a broad 

range of weather derivatives (futures, options, and swaps) are available currently. These 

products are based on some natural indicators (temperature, rain, snowfall, wind, and 

frost) such that market participants can manage the global weather-related risks, 

including catastrophic hurricanes, heat waves, and cold breaks. The appropriate risk 
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management by using the weather derivatives will increase energy firms’ value (Perez-

Gonzalez and Yun, 2013). This study further shows that these weather derivatives will 

also benefit the insurers.   

Because catastrophic events lead to large claims being listed on the liability of the 

insurer's balance sheet, the liability hedging would be the most direct means to control 

the risks. Catastrophe bonds (CatBonds) are a popular instrument for liability-linked 

securities. The bondholders pay the special purpose vehicle some principal amount to 

compensate for the claim payments under some predetermined conditions after the 

insurers promise to share certain premiums (namely a “high-yield rate”). The credit risk 

from the insurers can be avoided because of the use of a special purpose vehicle. 

However, the issue costs of CatBonds depend heavily on the insurer's credit rating. The 

CatBonds originated in the mid-1990s when the Hurricane Andrew and the Northridge 

earthquake in California caused the insured losses of approximately USD 30 billion. 

Except for the period during the global financial crisis in 2008, the historical growth 

rate of the CatBond market has been around 20% annually since they were first issued. 

Issuing new shares in the capital market is a common way for companies to raise 

funds. Similarly, the insurers can design a mechanism of contingent capital to exchange 

their equity or contingent surplus notes for funds under some predetermined conditions 

for catastrophic events. Some literature has gradually focused on the catastrophe equity 

puts (CatEPuts) since the contingent surplus note is actually a special case of CatEPuts. 

CatEPuts are a type of customized product in which credit risk and moral hazard exist. 

The insurer needs to find a counterparty and then negotiate a committed fee. The writers 

of CatEPuts are almost always large global reinsurance companies such as Centre Re 

and Swiss Re. Since RLI Corporation issued the first CatEPut in October 1996, three 

CatEPuts have been exercised among the seven CatEPuts that have been written (two 

from Centre Re, four from Swiss Re, and one from UBS) as of 2010. 
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The natural catastrophe (NatCat) loss model determines how effectively the asset, 

liability, and equity hedging against catastrophe risk performs. Most of the literature 

develops a NatCat loss model by adopting a pure Poisson process for the event 

occurrence and by taking a positive random variable to describe the event impact. Lin 

et al. (2009) propose a doubly stochastic Poisson process to model the arrival process 

for catastrophic events. Wu and Chung (2010) improve the pure Poisson process by 

using a cyclical trend arrival rate that captures the occurrence of catastrophic events 

better than the constant arrival rate and the regime-switching arrival rate. The 

alternative log-loss jump size follows the exponential (Christensen, 1999), normal 

(Vaugirard, 2003), lognormal (Burnecki et al., 2000), gamma (Wang and Jaimungal, 

2006), Pareto (Powers et al., 2012), and generalized extreme value distributions 

(Abdessalem and Ohnishi, 2014). However, these stochastic processes assume that the 

occurrence intensity and the jump size distribution are independent. Smith and Shively 

(1995) use a point process to calibrate the relationship between the frequency and size 

of loss data. The previous studies fit the distributions to the catastrophe losses in general 

rather than the insured losses of some specific events. Because different types of 

NatCats will result in different levels of property loss and victims, this study presents a 

loss model for the insured loss specifically caused by the winter storms in North 

America and Europe. 

There are three major contributions of the study. First, as winter storms have 

caused most NatCat-related insured losses in North America and Europe, our empirical 

study is based on the winter storm losses and finds that the Cox-Ingersoll-Ross (CIR) 

model is the best-fitting model for the insured storm losses in these areas. Second, since 

the catastrophe losses are significantly different across time, the insurance premiums 

become highly volatile. We present two feasible methods of premium payment that can 

be used to reduce the volatility of the annual insurance premium. One method is for the 
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insured to purchase the n-year insurance policy from the insurer, but the premium is 

amortized within n years, i.e., the annual premium is the same during the n years. The 

premium will be adjusted every n years. The other method is that the insured can also 

buy the n-year insurance policy with only 1/n share of the original maximum claim each 

year. Then, the insurance coverage will be almost invariable because there are always 

n policies to cover the NatCat risk each year. The numerical analysis results for various 

insurance periods show that the coverage term of n = 3 makes the premium less volatile. 

Third, we further develop the accounting procedures for the asset, liability, and equity 

hedging and estimate the financial performance in different scenarios. The numerical 

analysis results show that our suggested hedging methods are effective owing to the 

long-run positive profit and the improvement in insolvency ratios. The conclusions of 

this study provide the insurers with a more diversified portfolio under catastrophe risk 

management. 

The paper is organized as follows. Section 2 establishes the catastrophe loss model 

for the risk-adjusted capital and introduces the technical insurance premium formula. 

Section 3 develops the accounting procedures for the liability, equity, and asset hedging. 

Section 4 calibrates the loss model. Section 5 conducts the numerical simulations and 

analyzes the results. The conclusions are provided in Section 6. 

 

2. The catastrophe loss model and the insurance premium formula 

2.1 The insurance loss model 

The insurer must possess enough reserves for catastrophic event policies. The 

amount of reserves depends on the NatCat risk. Greater reserves offer more protection 

against the NatCat risk, but the potential capital cost is also greater. The reserve is a 

type of risk-adjusted capital. The risk-adjusted capital RAC with a coverage rate of 

  offers the risk cover ratio   of NatCat loss. This study assumes that the risk-
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adjusted capital is prepared for a 1-in-100-year catastrophic event. As NatCat losses 

show a serially dependent trend (Wu, 2015), we assume that the NatCat loss process 

follows a time series of 0,1,2,...{ ( )}tX t  . The corresponding risk-adjusted capital is 

denoted by ( )RAC t , which is defined as  

1
( )( ) ( ),X tRAC t F          (2.1) 

where 1
( )X tF  is the inverse of the quantile   of the cumulative distribution function 

( )X t . 

 

2.2 Insurance premiums and business cycles 

Assume reinsurers in the global insurance market are willing to insure for the 

NatCat risk whenever possible, i.e., they would resign only when they enter bankruptcy. 

All reinsurers are assumed to have the same initial capital and cost of raising capital, 

require the same expenses and risk premiums, and use the same formula for insurance 

premium calculations. The technical premium ( )TP t  for year t should cover the 

expected insured loss plus the risk premium plus the internal expense and operational 

cost. In addition, the technical premium should be adjusted to reflect the real claim. We 

also assume that the expected claim is determined by the NatCat distribution and is then 

adjusted by the loss ratio. The NatCat distribution is formed according to the relative 

long-term insured loss data. The loss ratio is calculated by the NatCat claims in recent 

years. In practice, 63% of the past claims are, on average, paid within a year and 82% 

within two years (Von Dahlen and Von, 2012). Therefore, the loss ratio for the year t is 

defined as follows: 

0.63 ( ) 0.19 ( 1) 0.18 ( 2)
( )

( )

X t X t X t
LR t

TP t

   
 .    (2.2) 

The practical premiums governed by the practical (re)insurance market seldom 
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stay at a certain level. The premiums rise quickly when a NatCat occurs and stay at a 

high level in the subsequent years. At this time, the shareholders of the insurance 

companies would require more risk premiums (higher cost of capital rate), which the 

insured are also more willing to accept. This is the so-called hard market. A succession 

of NatCat disasters would bring heavy claim losses for the insurers and thus encourage 

a rise in the premium rate. However, as the years pass after the NatCat disaster, the 

premiums would gradually fall (lower cost of capital rate) because the insurers would 

obtain a greater profit in good years, and the experience of suffering from the disasters 

recedes gradually. The market would then enter a soft period. However, the premiums 

will still stay above the least technical premium for satisfying the minimum rate of 

return required by the shareholders. 

The risk premium required by the shareholders is regarded as the cost of capital, 

( ),RAC t    where    denotes the cost of capital rate and can be interpreted as the risk 

premium rate required by the shareholders to invest in the insurance company. The 

internal expense and operational cost are denoted by ( ).e t  Most insurance policies 

have a maximum limit ( )M t   of claims to restrict the insurer's liability. As the limit 

( )M t  becomes larger, the insured obtains more protection, and thus, a higher premium 

is charged; however, ( )M t  must be less than ( )RAC t  to ensure that the insurer can 

pay the full claim.   

Therefore, the technical premium ( )TP t  (collected at time 1t  ) is defined as 

follows: 

( )[ ( )] ( 1) ( ) ( )
( ) ,

1

M tE X t LR t RAC t e t
TP t

r

    



    (2.3) 

where 
( )( )

0
[ ( )] ( )

M tM tE X t x f x dx  ,  ( )f x  is the probability density of ( )X t . r is 

the risk-free interest rate. 

Since the occurrence of and damage from NatCats are irregular, the premiums will 
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also be volatile each year according to Eq. (2.3). The unstable premiums cause an 

uncertainty of supply and demand for NatCat insurance policies. The insurer would not 

have a stable expected premium income to make a proper capital planning. The insured 

would also be concerned about the budget for insurance. This phenomenon would 

damage the insurer's financial stability and discourage the insured from NatCat 

insurance policies, thus affecting insurance market operations in the long term.  

The insured can take out the multi-year insurance or a one-year policy in a rolling 

year to stabilize the NatCat premiums. The duration of property insurance is short, 

usually one year, due to the more irregular events in property insurance than those in 

life insurance. However, the insured may negotiate with the insurer to write the several-

year insurance policy and amortize the premium per year. If the duration is assumed to 

be n years, the loss ratio at the end of year t is computed by accounting for the claims 

and premiums in the previous n years:  

1

0
1

0

( )
( )

( )

n

i
n

i

X t i
LR t

TP t i















.         (2.4) 

The loss ratio is then used to calculate the insurance premium for the next n-year 

duration. The insurer must also estimate the claims and the risk-adjusted capital in the 

future n years. The annual premium is estimated by amortizing the n-year premium by 

a discount of the risk-free interest rate as follows: 

1 1( )

0 0
1

0

[ ( )] ( 1) ( ) ( )
( ) ,

(1 )

n nM t i

i i
n n i

i

E X t i LR t RAC t i e t
TP t

r

 
 





     



 


   (2.5)

 

where ( )nTP t  denotes the future annual insurance premium with yearly maximum 

claim ( )M t i  for the n-year insurance duration. Because the catastrophic events 

occur randomly and cause unpredictable damage, the duration n the insurer allows is 

shorter than that of life insurance. The stable premium is at least advantageous to both 
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the insurer and the insured for several years. The premium would be adjusted every n 

years. 

Moreover, the insured can also take out the insurance policy of n-year duration but 

with only 1/n share of the original maximum claim each year, ( )M t i /n. We call it 

the rolling-year insurance. That is, the insurance coverage can be decomposed into n 

insurance contracts, where each lasts n years and covers 1/n share of the maximum 

claim. For example, if this year is t, a contract updated n-1 years ago covers the interval 

of n years from year t–(n-1) to year t. Then, the insured in year t has n policies 

( )()),...,1(( tTPntTP nn  ) against the NatCat risk, and the coverage is 

1

0
( ) /

n

i
M t i n




 , which may approximate ( )M t . The premium is calculated as 

follows:  

1 1 1( )

0 0 0

1 1 1
[ ( )] ( 1) ( ) ( )

( ) .
(1 )

n n nM t i

i i ir
n n

E X t i LR t RAC t i e t i
n n nTP t

r

  
  

      




  
 (2.6) 

This method allows the insurer to adjust the premium every year using the new 

catastrophe information, but the insured only bears 1/n of the premium due to 1/n of the 

maximum claim, ( )M t i /n. 

 

3. The accounting procedures for liability, equity, and asset hedging 

A catastrophe claim increases the insurer's liability, but the premium income 

increases the insurer's assets. The insurer's equity decreases if the claim exceeds the 

premium. Except for the maximum claim, once the equity becomes negative, the insurer 

will face default. Therefore, the methods for reducing liability or enlarging equity or 

assets will effectively hedge the NatCat risk when a catastrophic event occurs. For 

instance, the catastrophe bonds are a popular instrument of liability securitization to 

pay the claims of bondholders. Besides, the insurer can also exchange its equity for the 
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pre-specified capital by exercising the catastrophe equity put option when the heavy 

catastrophe loss increases and its share price falls to the predetermined triggers. In 

addition, the insurer can also use the weather derivatives to offer a contingent capital to 

bolster its assets against the unexpected major catastrophic events. The insurer may pay 

some derivative premiums in good years to obtain some profits for the claims in bad 

years. 

 

3.1 Basic accounting procedures to measure the profit and loss 

The insurer has initial assets (1)RAC  for issuing NatCat insurance policies in 

year 1 and then continues to prepare ( )RAC t  at the end of year t-1 for issuing policies 

in year t. Over the period of the entire business, the insurer is assumed to operate at its 

best because the maximum limit of claims prevents the occurrence of default. When its 

operation results in profits, debts have priority for repayment, and the remainder is paid 

as dividends. The insurer can further increase some liabilities as long as it can still 

match the least requirement of capital for new policies in the next year. 

The new capital for the next year is also set at the end of the year t when the actual 

amount of the aggregate claim payment is known. The underwriting result ( )UR t  of 

the insurer at the end of year t is the result of premium income minus claims and 

expenses, which is calculated by the following equation: 

    ( ) ( ) min ( ),  ( ) ( ),UR t TP t X t M t e t                (3.1) 

where ( )M t  denotes the design of the maximum claim. Moreover, the insurer has two 

additional incomes: the interest earned on the previous-year capital and premiums, and 

the adjustment of the risk-adjusted capital between the current year and the subsequent 

year. Therefore, the operating result at the end of year t is 

       ( ) ( ) ( ( ) ( )) ( 1) ( ),OR t UR t r RAC t TP t RAC t RAC t              (3.2) 
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where r is the risk-free interest rate.  

We assume that the insurer contracts a loan to satisfy the capital shortfall. The 

liability in this study only covers operational costs and excludes other purposes, such 

as investments. The accumulated liability ( )L t  by the end of year t involves the 

previous-year liability ( 1)L t  , the adjustment ( ( 1) ( )RAC t RAC t  ) of the risk-

adjusted capital for polices in the subsequent year, and the operating result ( )OR t . It 

is modeled by:  

 ( ) max ( 1) ( 1) ( ) ( ),  0 .L t L t RAC t RAC t OR t           (3.3) 

If the accumulated liability drops, it means that the positive operating result has paid 

some liability. The adjusted operating result ( )AOR t  at the end of year t is estimated 

by: 

 ( ) ( ) max ( 1) ( ),  0 .AOR t OR t L t L t          (3.4) 

Therefore, the profit before taxes ( )PBT t  is computed by ( )AOR t  subtracted by the 

interest of previous-year liability ( 1)cL t  , which is expressed by: 

( ) ( ) ( 1),PBT t AOR t cL t            (3.5) 

where c is the loan rate for liability. If the profit before taxes ( )PBT t  is negative, the 

government provides a tax shield with rate   to encourage the NatCat market by 

increasing future capital. The accumulated amount of deferred taxes ( )DTAX t  until 

year t is calculated by: 

 ( ) max ( 1) ( ),  0 .DTAX t DTAX t PBT t          (3.6) 

If the profit before taxes ( )PBT t  is positive, the taxable amount is ( )PBT t  

subtracted by ( 1)DTAX t  . The tax payment ( )TAX t  is charged with the tax rate  :  

 ( ) max ( ) ( 1),  0 .TAX t PBT t DTAX t            (3.7) 

The profit after taxes ( )PAT t  at the end of year t is thus computed by the profit before 
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taxes minus the tax payment: 

( ) ( ) ( )PAT t PBT t TAX t          (3.8) 

From the perspective of shareholders, the shareholders' equity should evolve in 

line with the insurer's operational performance. This study has simplified the 

accounting procedures. The insurer's asset only includes the operational necessity, i.e., 

the risk-adjusted capital. The profit after tax ( )PAT t  is regarded as the dividend paid 

to the shareholders. The equity ( )E t  at the end of year t equals the necessary capital 

( 1)RAC t   next year minus the necessary liability ( )L t :  

( ) ( 1) ( ).E t RAC t L t           (3.9) 

The accumulated dividends from year 0 to t are 

      ( ) (1 ) ( 1) max ( ),  0 ,D t r D t PAT t           (3.10) 

where (0)D  is assumed to be 0. The annual profit ( )AP t  to the shareholders includes 

the interest on the previous dividend payment plus the increase in dividend from profit 

after tax plus the increase in equity (from the possible reduction in liability), which is 

modeled by 

( ) ( 1) ( ) ( ( ) ( 1)).AP t rD t PAT t E t E t        (3.11) 

Shareholders' wealth by the end of year t is the sum of the accumulated dividends 

in their account and the final equity ( )E t  of the insurance company: 

      ( ) ( ) ( ).W t D t E t            (3.12) 

Of course, the shareholders hope that the insurer can maximize their wealth. However, 

the insurer must balance profits and insolvency risk because default would severely 

impact shareholders. 

 

3.2 The liability hedging: catastrophe bonds 

Consider that an insurer issues a CatBond to hedge its catastrophe risk. The 
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contract is designed as 1-year zero-coupon bond with a discount factor of ρ. 

Bondholders pay the amount ( )N t  to the special purpose vehicle (SPV) at the 

beginning of year t and receive the payoff ( )bondPO t  at the end of year t from SPV:  

 ( ) max ( ) max ( ) ( ( ) ( )),  0 ,  0 ,bondPO t N t X t M t N t        (3.13) 

in which bondholders offer the additional funds of ( )N t  to share the claim from 

( ) ( )M t N t  to ( )M t . We assume that ( )N t  is based on the predetermined ratio h 

of ( )RAC t . Thus, the technical premium ( )bondTP t  for the CatBond is adjusted as in 

Eq. (2.3). 

The insurer needs to pay the SPV some interest difference, ( )id t , between the 

discount factors of   and the risk-free interest rate r to guarantee the bondholder’s 

risk premium. Therefore, the underwriting result ( )bondUR t  for the CatBond issued by 

the insurer at the end of year t is calculated by  

 ( ) ( ) min ( ),  ( ) ( ) ( ) ( ),bondUR t TP t X t M t N t id t e t       (3.14) 

Where 
( )

( ) ( ).
1

N t
id t N t

r
 


 The maximum of the claim paid by the insurer is 

( ) ( )M t N t . Thus, the risk-adjusted capital in year t is adjusted to ( ) ( )RAC t N t , 

and the operating result at the end of year t is adjusted by 

      ( ) ( ) ( ( ) ( ) ( )) ( 1) ( ),OR t UR t r RAC t N t TP t RAC t RAC t           (3.15) 

where r is the risk-free interest rate. The remaining accounting procedures for the 

insurer are the same as those in Section 3.1. 

From the perspective of the bondholder, he/she can obtain the profit ( )(1 )N t   

in a regular year when ( ) ( ) ( )X t M t N t  , but may suffer losses in a bad year when 

( ) ( ) ( )X t M t N t  . The annual profit APbond (t) paid to the bondholder is calculated by 

 ( ) ( 1) ( )(1 ) min ( ),  max ( ) ( ( ) ( )),  0 ,bond bondAP t rAP t N t N t X t M t N t            

                                                                (3.16) 
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3.3 The equity hedging: catastrophe equity puts 

Assume that an insurer currently has 1n  shares outstanding and purchases a 

CatEPut from a financial institution at the beginning of each year to hedge its 1-year 

catastrophe risk. If the CatEPuts are exercised during the period from 0 to t, the number 

of shares outstanding will increase to ( )n t , and the additional shares issued will be 

held by the seller of the CatEPuts, such as financial institutions or large reinsurers. The 

share price in year t can be valued as follows: 

( )
( ) max ,  0

( )

E t
S t

n t

 
  

 
.       (3.17) 

Assume that the CatEPut contract is written at the end of year 1t  . The seller 

receives the CatEPut premium from the insurer and is required to buy 2n  shares with 

the strike price of ( )K t  if ( )S t  is less than ( )K t  and ( ) X t exceeds 

2( ) ( )M t n K t . The payoffs of the CatEPut without counterparty risk are designated by 

2 2( ( ) ( )),  if ( ) < ( ) and ( ) > ( ) ( )
( )

0,                         otherwise
CatEPut

n K t S t S t K t X t M t n K t
PO t

   
 


,  

(3.18) 

where ( )K t is determined by
2

( )h RAC t

n


. The post-exercise share price ( )S t  is 

computed by 2( ) ( )

( )

E t n K t

n t


 when the insurer is assumed to issue new shares 2n  for 

the exercise of the CatEPuts. Thus, the CatEPut can be valued as follows: 

( ) ( ) .r
CatEPut CatEPutP t E e PO t         (3.19) 

From the perspective of a financial institution serving as a new shareholder, it 

receives the premium of the CatEPut from the insurer and needs to infuse new capital 

into the insurer by purchasing the insurer’s new equity in a bad year. We assume that 
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the financial institutional investor owns 1( )n t n  shares in year t. The annual profit 

( )CatEPutAP t  paid to the financial institutional investor is given by 

2
2 ( ) < ( )  and ( ) > ( ) ( )

( ) ( ) ( ( ) ( ))

( 1)( ( ) ( 1)),

CatEPut CatEPut S t K t X t M t n K t
AP t P t n K t S t I

n t S t S t




  
  

   　　　　　　　　　　
        (3.20) 

When the market becomes more stable and the insurer’s stock price is higher than that 

during its financial distress, the financial institutional investor would start selling these 

shares in the capital market and get back the funds. This study assumes that the investor 

sells 2n  shares in the year when the stock price rises above the strike price K. The 

accumulated wealth of the investor at the end of year t is calculated by   
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 (3.21) 

in which the first term on the right-hand side of the equation denotes the accumulated 

premium of the CatEPut, the second term represents the outflow of capital from the 

investor to the insurer due to the insurer exercising the CatEPut, the third term stands 

for the inflow of capital to the investor if the stock price rises above ( )K t , and the 

forth term indicates the market value of the investor's shares. 

As the CatEPut brings the additional standby capital 2 ( )n K t , the insurer only 

needs to provide the capital of RAC(t)− 2 ( )n K t . To be consistent with the previous 

analysis of the CatBonds, we assume 2 ( )n K t  is equal to ( )N t . The underwriting 

result ( )UR t  of the insurer at the end of year t must include the additional expense of 

the CatEPut premium. 

   ( ) ( ) min ( ),  ( ) ( ) ( ) ( ).CatEPut CatEPutUR t TP t X t M t N t P t e t       (3.22) 
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From the perspective of the original shareholder with 1n  shares, he/she owns 

some proportion of the total equity and should obtain the same proportion of dividends. 

The accumulated dividends from year 0 to t are 

    1( ) (1 ) ( 1) max ( ),  0 ,
( )

n
D t r D t PAT t

n t
           (3.23) 

The annual profit ( )AP t  for the shareholder is calculated by 

1 1( ) ( 1) ( ) ( ( ) ( 1)),
( ) ( )

n n
AP t rD t PAT t E t E t

n t n t
        (3.24) 

and the accumulated wealth of the shareholder from year 0 to the end of year t is  

      1( ) ( ) ( ),
( )

n
W t D t E t

n t
        (3.25) 

The remaining accounting procedures for the insurer are the same as those in Section 

3.1. 

 

3.4 The asset hedging: catastrophe derivatives 

The weather derivatives with an underlying index based on snowfall can be used 

to hedge the NatCat risk caused by storms, but it may result in a basis risk. For 

simplicity, this study assumes that the insurer uses the bull spread of call options on a 

loss index to cover the amount of ( )N t  for a claim. The spread premium of the 

derivatives in year t thus is the difference between the payoffs of two call options 

discounted by a risk-free interest rate. 

( ) e [ ( ) ( ( ) ( ))] [ ( ) ( )]r rd t E X t M t N t e E X t M t      ,   (3.26) 

where ( )N t  is the proportional ratio h of ( )RAC t . The insurer (assumed to be risk-

neutral) purchases one call option with a lower strike price of ( ) ( )M t N t  and sells 

another call option with a higher strike price of ( )M t . Therefore, the underwriting 

result ( )derivativeUR t  of the insurer at the end of year t is calculated by  

 ( ) ( ) min ( ),  ( ) ( ) ( ) ( ),derivativeUR t TP t X t M t N t d t e t       (3.27) 
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where the maximum of the claim paid by the insurer is ( ) ( )M t N t . The remaining 

accounting procedures for the insurer are the same as those in Section 3.1. 

 

3.5 Performance measures 

To analyze whether the catastrophe derivatives, CatBonds, and CatEPuts can be 

used to reduce the insurers’ exposure to natural catastrophe risk and assist the insurers 

in improving their financial performance, we need to set up some criteria to measure 

the performance in the four cases presented in Sections 3.1, 3.2, 3.3, and 3.4. The 

following four criteria, profitability index, modified internal rate of return, Sharpe ratio, 

and insolvency ratio, are used in our analysis. 

3.5.1 Profitability index 

One of the most frequently used investment evaluation criteria is the net present 

value (NPV), which is the discounted value of the future cash flows ( )Z t  of an 

investment minus its initial cost. In view of the initial capital requirement, a feasible 

method is the profitability index (PI), which quantifies how much an investment 

contributes to investors' wealth per unit of investment. A value greater than 0 means 

that the investment is profitable for the investor. The profitability index thus is defined 

as  

,
(1)

NPV
PI

RAC
          (3.28) 

where NPV is expressed by 

      
1

( )
(1),

(1 )

T

t
t

Z t
NPV RAC

r

 
         (3.29) 

where Z(t) is the annual profit AP(t) to the shareholders of the insurer under different 

hedging strategies discussed above, and T  means the life of the investment. 

3.5.2 Modified internal rate of return 

Another common concept in measuring the performance of an investment is the 
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internal rate of return on the investment. An investment's internal rate of return (IRR) 

is the discount rate that makes the net present value (NPV) of the future cash flows 

( )Z t  of an investment equal to zero. The IRR is defined as 

1

( )
(1) 0.

(1 )

T

t
t

Z t
RAC

IRR

 
             (3.30) 

A problem with the IRR is that an investment may have more than one IRR because a 

cash outflow of the insured losses occurs sometime after the inflows have begun. A 

modified internal rate of return (MIRR) is the discount rate that makes the present value 

of the future value of cash inflows ( ( ) 0Z t  ) equal to the present value of cash outflows 

( ( ) 0Z t  ). The MIRR is defined as 

   
1 1

max ( ),  0 max ( ),  0 (1 )
(1) .

(1 ) (1 )

T tT T

t T
t t

Z t Z t r
RAC

r MIRR



 

 
 

         (3.31) 

3.5.3 Sharpe ratio 

The Sharpe ratio (SR) measures the excess return per unit of standard deviation for 

an investment. Therefore, it characterizes how well the return of an investment 

compensates the investor for the risk taken. The ratio is calculated by 

1

1
Re( )

,

T

t

t r
T

SR








          (3.32) 

where   is the empirical standard deviation of the investment return, and the return 

is defined by ( ) ( 1)
Re( )

( 1)

W t W t
t

W t

 



  for t =1,……,T. An investment with a higher 

SR offers a higher return for the same risk. 

3.5.4 Insolvency ratio 

An insurer's insolvency risk becomes proportionally larger as the liability 

increases and the equity decreases. To measure the insolvency risk caused by large 

catastrophes, we define the insolvency ratio ( )ISR t  as the liability divided by the 

equity: 

( ) ( ) / ( ),ISR t L t E t      (3.33) 
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where a larger insolvency ratio means that there is a higher chance of the insurer 

defaulting. 

 

4. The calibration of loss model 

The source of the insured losses caused by storms is from the publication “Sigma” 

issued by Swiss Re every year. The journal regularly reports all types of catastrophe 

losses that have occurred in the previous year. This study collects the data of the storm 

events for which the insured claims exceeded USD 48.8 million from 2002 to 2014, 

with 275 observations in North America and 46 in Europe. The loss data are adjusted 

to the 2014 price level by using the US consumer price index. If the insured loss is 

estimated with a range, we take the middle value as the insured loss for the event. Tables 

1a and 1b display the descriptive statistics of the insured storm losses (in millions of 

USD, based on the 2014 price level) in North America and Europe, respectively. Table 

1a shows that the losses in North America vary from a minimum of 51.56 to a maximum 

of 8,419.56 (million USD). The standard deviation of 946.79 is much larger than the 

mean of 584.68. The data distribution has more right skewness of 5.15 and much higher 

kurtosis of 35.88 than the normal distribution. The augmented Dickey-Fuller (ADF) 

test statistic reflects that the time series loss data are stationary. The data in Table 1b 

also show a similar result in Europe as that in North America. Figure 2a and Figure 2b 

plot the sample autocorrelation of the time series loss data with 95% conference 

intervals. One autocorrelation signature at a lag of 3 with a sample autocorrelation of 

0.2606 in Figure 2a displays a serially dependent characteristic, and one autocorrelation 

signature at a lag of 9 with a sample autocorrelation of 0.3497 in Figure 2b does as well. 

Consequently, we need to find an insured storm loss model to satisfactorily describe 

the statistic characteristics of the loss data mentioned above.  

[Insert Table 1a and Table 1b here] 
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[Insert Figure 2a and Figure 2b here] 

The empirical results in Tables 2a and 2b show that the CIR model (as shown in 

Appendix) is the best-fitting model for the insured storm losses in North America and 

Europe. The empirical experiments on the insured storm losses in North America and 

Europe are conducted by the maximum likelihood estimation for the distributions and 

models presented in the previous literature, such as the lognormal, gamma, generalized 

Pareto, generalized extreme value, exponential distributions, point process, and the CIR 

model. The estimation results of the CIR model in Tables 2a and 2b show that it can 

offer the maximum log-likelihood (-7.34 for North America and -7.21 for Europe) and 

the minimum AIC (20.69 for North America and 20.43 for Europe) and BIC (31.54 for 

North America and 25.91 for Europe).  

[Insert Table 2a and Table 2b here] 

 

5. Simulation results and analysis 

In this section, we estimate the expected value of the performance measures and 

the different levels of insolvency ratios in asset, liability and equity hedging against the 

NatCat risk. The Monte Carlo estimates are based on 100,000 independent replicates 

calculated by the loss model over a period of 30 years. The parameters of the simulation 

base are defined in Table 3, referring to the studies of Dacorogna et al. (2013) and Wu 

(2015). The 95% asymptotic confidence interval for the expected values of the 

performance measures is calculated using these simulation results.  

[Insert Table 3 here] 

 

5.1 Financial performance without hedging against the NatCat risk under 

different maximum claims 

Consider an insurer who does not adopt any hedging method, and shareholders 
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raise all RACs for issuing new NatCat insurance policies. Thus, the initial equity and 

liability are RAC and zero, respectively. Table 4 shows the insurer's insolvency profile 

and shareholders’ expected performance measures (PI, MIRR, and SR) under different 

maximum claim levels. The positive expected values of PI, MIRR, and SR ensure that 

the long-term profit exists based on the insured losses following the CIR model. These 

three expected values are not significantly different under different maximum claim 

levels. This means that although the insurance premium income becomes greater as the 

maximum claim becomes larger, the claim also becomes larger. The larger maximum 

claim offers the insurer less protection against the NatCat risk. The insolvency profile 

in Table 4 reflects the occurrence frequency of financial distress for the insurer within 

30 years. For instance, the insurer will face approximately one instance of financial 

distress over the period of 30 years for ISR >1.  

 [Insert Table 4 here] 

 

5.2 Financial performance with asset hedging against the NatCat risk under 

different maximum claims 

Consider an insurer who adopts the asset hedging against the NatCat risk, such as 

catastrophe derivatives with NatCat-related underlying assets or indexes. Assume that 

0.8*RAC comes from its shareholders, and subsequently the insurer buys the 

catastrophe derivatives to provide the remainder (0.2*RAC) of the risk-adjusted capital. 

The contingent capital of 0.2*RAC would be used to cover the claim loss over the 

predetermined strike price (M(t) – N(t)). Therefore, the initial equity and liability are 

0.8*RAC and nil, respectively. Table 5 shows the insurer's insolvency profile and 

shareholders’ expected performance measures (PI, MIRR, and SR) under different 

maximum claim levels. The positive expected values of PI, MIRR, and SR ensure that 

the long-term profit exists based on the insured losses following the CIR model. It 
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shows the feasibility that an insurer can make up for the deficiency of RAC by using 

catastrophe derivatives for the NatCat insurance policies. Over the period of 30 years, 

the occurrence frequency of financial distress for insolvency ratio > 1 in Table 5 

gradually becomes lower than that in Table 4 as the maximum claim level decreases. 

The occurrence frequency of serious financial distress for ISR > 2 becomes significantly 

smaller as the maximum claim decreases (from 1*RAC to 0.8*RAC). Based on the 

equivalent capital requirement, the occurrence frequency of financial distress for 

0.8*RAC in Table 5 is less than that for the corresponding 1*RAC in Table 4. It shows 

that catastrophe derivatives can be used to reduce the insolvency risk. 

 [Insert Table 5 here] 

 

5.3 Financial performance with liability hedging against the NatCat risk under 

different maximum claims 

Consider that an insurer adopts the liability hedging against the NatCat risk, such 

as CatBonds with NatCat-related underlying assets or indexes. Assume that 0.8*RAC 

comes from its shareholders, and the remaining 0.2*RAC is prepared by issuing 

CatBonds, The payment on CatBonds will be triggered under some predetermined 

conditions. Thus, the initial equity and liability are 0.8*RAC and nil, respectively. The 

standby equity of 0.2*RAC would be used to return to the bondholders or compensate 

the claimers for the loss at the end of the issue year. Table 6 shows the insurer's 

insolvency profile and the shareholders’ expected performance measures (PI, MIRR, 

and SR) under different maximum claim levels. The positive expected values of PI, 

MIRR, and SR ensure that the long-term profit exists based on the insured losses 

following the CIR model. It shows the feasibility that an insurer can make up for the 

deficiency of RAC by issuing CatBonds for the NatCat insurance policies. Over the 

period of 30 years, the occurrence frequency of financial distress (for insolvency ratio 
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> 1) in Table 6 gradually becomes lower than that in Table 4 as the maximum claim 

level decreases. The occurrence frequency of serious financial distress for ISR > 2 

rapidly becomes smaller as the maximum claim decreases. Based on the equivalent 

capital requirement, the occurrence frequency of financial distress for 0.8*RAC in Table 

6 is less than that for the corresponding 1*RAC in Table 4. It shows that CatBonds can 

also be used to reduce the insolvency risk. 

 [Insert Table 6 here] 

 

5.4 Financial performance with equity hedging against the NatCat risk under 

different maximum claims 

Consider that an insurer adopts the equity hedging against the NatCat risk, such as 

CatEPuts with NatCat-related underlying assets or indexes. Assume that 0.8*RAC 

comes from its shareholders, and the remaining 0.2*RAC is raised by purchasing and 

exercising the CatEPuts. Thus, the initial equity and liability are 0.8*RAC and zero, 

respectively. The standby equity of 0.2*RAC would be used to compensate the claimers 

for the loss at the end of the issue year. If the severe impact of catastrophe events occurs 

frequently, the original shareholders' equity would be diluted by the insurer issuing 

more equity to the seller of the CatEPuts. Table 7 shows the insurer's insolvency profile 

and the shareholders’ expected performance measures (PI, MIRR, and SR) under 

different maximum claim levels. The positive expected values of PI, MIRR, and SR 

ensure that the long-term profit exists based on the insured losses following the CIR 

model. It shows the feasibility that an insurer can make up for the deficiency of RAC 

by purchasing CatEPuts for the NatCat insurance policies. Although the expected 

values of PI in Table 7 are greater than those in Tables 4, 5, and 6, the expected values 

of MIRR and SR are less than those in Tables 4, 5, and 6. The hedging performance of 

the CatEPuts is not necessarily better than that of the catastrophe derivatives and 
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CatBonds. Over the period of 30 years, the occurrence frequency of financial distress 

for insolvency ratio > 1 gradually becomes lower than that in Table 4 as the maximum 

claim level decreases. The instances of serious financial distress for ISR > 2 rapidly 

becomes smaller as the maximum claim decreases. Based on the equivalent capital 

requirement, the occurrence frequency of financial distress for 0.8*RAC in Table 7 is 

less than that for the corresponding 1*RAC in Table 4. This shows that CatEPuts can 

also be used to reduce the insolvency risk. 

 [Insert Table 7 here] 

 

5.5 Analysis of the different premium payment terms  

Stable premium payments are good for the insurer and the insured; however, the 

premium must be adjusted by the loss ratio frequently. The numerical analysis is 

designed to find a payment term such that the standard deviation of the premiums within 

30 years is the minimum. We consider five different insurance periods of 1, 2, 3, 4, and 

5 years under the annual premium for the multi-year insurance and the rolling-year 

insurance policies. Table 8 shows that the means of the premium volatilities over the 

period of 30 years decreases as the duration increases, but the standard deviation of the 

premium volatilities over the period of 30 years is minimized for the insurance period 

of 3 years. Thus, the payment term of three years is the appropriate period of the stable 

premium for the insurance policies against the catastrophe risk of winter storms. 

[Insert Table 8 here] 

 

6. Conclusions 

Out of the natural catastrophes in North America and Europe, the winter storms 

are primarily responsible for most of the insured losses, and the insured storm losses 

present a serial dependence. According to the statistical characteristics, the CIR model 
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for storm loss claims is shown to be the better-fitting model among the models studied 

in the prior literature. Based on this model, we can estimate the risk-adjusted capital 

and the technical insurance premium every year and set up the insurer's accounting 

procedures. The numerical analysis results of the financial performance show that the 

asset (catastrophe derivatives), liability (catastrophe bonds), and equity (catastrophe 

equity puts) hedging strategies are effective in view of both the long-term positive profit 

and the improvement in the insolvency ratios (liability divided by equity). Every 

method or instrument against the NatCat risk simultaneously provides some advantages 

and disadvantages. Each insurer has its own idiosyncratic capital structure and deals 

with its local insurance and capital markets. The recommendations of the study provide 

the insurers with a more diversified portfolio under the catastrophe risk management; 

however, no single hedging instrument consistently dominates the others in terms of 

financial performance. 

Two feasible methods for premium payment are presented to reduce the volatility 

of the annual insurance premiums. As the losses of catastrophic disasters vary widely 

over time, the insurance premiums become extremely volatile. The stable premiums 

benefit both the insurer and the insured for several years. One method is for the insured 

to purchase the n-year insurance from the insurer one time with the premium amortized 

within n years, i.e., the annual premium is the same during the n years. The premium 

will be adjusted every n years. The other method is for the insured to buy the n-year 

insurance but with only 1/n share of the original maximum claim every year. Then, the 

insurance coverage will be almost invariable because there are always n policies to 

cover the NatCat risk every year. The numerical analysis results of the different terms 

show that the coverage term of n = 3 lessens the volatility of the premiums. 

 



25 
 

Appendix 

The CIR model is in the form of ( ) ( ( )) ( ) ( )XdX t a b X t dt X t dW t   , where 

X(t) stands for the insured storm losses; a, b, and X  denote the mean-reverting speed, 

mean, and instantaneous volatility rate, respectively; W follows the Wiener process. 

Furthermore, 2cX(t) follows a non-central chi-square 2 distribution with 2q + 2 degrees 

of freedom and non-centrality parameter 2u, where 
2

,
(1 )a

X

a
c

e 


  ( 1) ,au cr t e   

2
1

X

ab
q


  . The maximum likelihood estimation in this study is based on a true CIR 

distribution. The following steps are implemented: The first step is to derive the log-

likelihood function of CIR model. The second step is to estimate the initial points to 

find the global optimum.  We get the initial parameter estimates in North America 

(Europe) from 275 (46) observations by using the Ordinary Least Square (OLS) 

regression on the discretized version of the CIR model, ( ) ( )X t t X t 

( ( )) ( ) ( )Xa b X t t X t t     , where ( )t  is normally distributed with mean zero 

and variance t . The third step is to achieve the maximum of the log-likelihood 

function. According to the parameters estimated in Table 2a, without loss of generality, 

we estimate the claim 2cX(0) in year 0 by using a = 4.1170, b = 585.8461, X  = 

71.4249, and X(0) = 357.403.  
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Figure 1 NatCat insured losses and storm insured losses  

(in millions of USD based on 2014 price level) 

 

 

    
Figure 2a The autocorrelation plot for the storm losses in North America 

 

 

    
Figure 2b The autocorrelation plot for the storm losses in Europe 
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Table 1a. Descriptive statistics of the insured storm losses in North America from 2002 to 2014 in millions of USD. 
 
 

 
 

Notes: 1. Source: Sigma from Swiss Re 2002 to 2014, in 2014 price level. 
2. This table shows the descriptive statistics for the insured losses. The number of observations (N), the mean, the median, the standard 

deviation (S.D.), the minimum (Min), the maximum (Max), and the coefficients of skewness (Skew) and Kurtosis (Kurt) are reported. J-
B denotes the test statistic for the Jarque-Bera normality test, which has a chi-square distribution with two degrees of freedom. p denotes 
the p-value in parentheses with the value 0.001 represents a p-value less than 0.001. ADF represents the Augmented Dickey-Fuller test 
statistic.  

 
 
 
 
 
 

 

Table 1b. Descriptive statistics of the insured storm losses in Europe from 2002 to 2014 in millions of USD. 
 
 
 

Notes: 1. Source: Sigma from Swiss Re 2002 to 2014, in 2014 price level. 
2. This table shows the descriptive statistics for the insured losses. The number of observations (N), the mean, the median, the standard 

deviation (S.D.), the minimum (Min), the maximum (Max), and the coefficients of skewness (Skew) and Kurtosis (Kurt) are reported. J-
B denotes the test statistic for the Jarque-Bera normality test, which has a chi-square distribution with two degrees of freedom. p denotes 
the p-value in parentheses with the value 0.001 represents a p-value less than 0.001. ADF represents the Augmented Dickey-Fuller test 
statistic.  

 
 
 

 

 N Mean Median S.D. Min Max Skew Kurt. J-B(p) ADF(p) 
Insured losses 275 584.68 228.35 946.79 51.56 8,419.56 5.15 35.88 15408(0.001) -12.30(0.001)

 N Mean Median S.D. Min Max Skew Kurt. J-B(p) ADF(p) 
Insured losses 46 605.50 239.50 1,065.33 5.00 6,100.00 3.66 15.58 461.77(0.001) -5.86(0.001)



Table 2a. Maximum likelihood estimation of the insured storm losses in North America  
 
 
 
 
 
 
 
 
 
 
 
 

Notes: 1. AIC denotes the Akaike Information Criterion for the estimated model.  
2. BIC denotes Bayesian Information Criterion 
3. CIR model denotes the Cox-Ingersoll-Ross mean-reverting square root models. 

 
Table 2b. Maximum likelihood estimation of the insured storm losses in Europe 

 

 

 

 

 

 

 

 

 
Notes: 1. AIC denotes the Akaike Information Criterion for the estimated model.  

2. BIC denotes Bayesian Information Criterion 
3. CIR model denotes the Cox-Ingersoll-Ross mean-reverting square root models. 

Estimated distribution  
parameters  

Lognormal Gamma Generalized
Pareto 

Generalized 
extreme value 

Exponential Point 
Process 

CIR 

Scale 1.0313 617.2137 407.6014 179.0435 585.8423 2,188.5650  
Shape  0.9473 0.2990 0.7803  0.2825  
Location 5.7585   204.3687  6,285.9438  
Mean-reverting speed       4.1170 
Mean       585.8461
Instantaneous volatility rate       71.4249 
Log-Likelihood -1975.04 -2078.90 -2000.09 -1968.94 -2020.22 -657.39 -7.34 
AIC 3954.09 4161.80 4004.18 3943.92 4042.43 1320.78 20.69 
BIC 3961.31 4169.03 4011.41 3954.76 4046.04 1331.61 31.54 

Estimated distribution  
parameters  

Lognormal Gamma Generalized
Pareto 

Generalized 
extreme value 

Exponential Point 
process 

CIR 

Scale 1.3047 873.4036 296.7604 170.8691 605.4956 6,012.3861  
Shape  0.6933 0.5358 0.8252  0.5098  
Location 5.5331   160.7423  11,209.4898  
Mean-reverting speed       16.3962 
Mean       616.7786
Instantaneous volatility rate       170.6214
Log-Likelihood -332.03 -345.98 -332.99 -331.13 -340.68 -107.57 -7.21 
AIC 668.06 695.97 669.98 668.26 683.36 221.14 20.43 
BIC 671.72 699.63 673.63 673.75 685.19 226.63 25.91 



Table 3. Standard set of parameters 

Standard parameters  

Initial claim in year 0 83.7691 million USD 

Claim coverage rate   0.99 

Risk-free rate r  2% 

Loan rate for liability  c 3% 

Shareholder's required return   15% 

Expense e  1% of expected loss 

Tax rate   25% 

Tax shield rate   25% 

Life of the investment T 30 

Simulation times 100,000 

Predetermined ratio of RAC(t) for CatBonds, 

CatEPuts, and derivatives  h 

0.2 

Discount rate of CatBonds   0.9 

Initial shares outstanding 1n  10 

New shares issued for the exercise of CatEPuts 1 

Notes: 1. The parameters of the simulation base refer to the studies of Dacorogna et al. (2013) and Wu (2015).  

2. The initial claim in year 0 is estimated by the methods described in the Appendix. 
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Table 4. Financial performance without hedging against the NatCat risk under different maximum claims 

 

 

 

 

 

 

 

 

 

Notes: The numbers listed for different insolvency ratios denote the occurrence frequency of financial distress within 30 years. 

 

 

Table 5. Financial performance with catastrophe derivatives hedging against the NatCat risk under different maximum claims 

 

 

 

 

 

 

 

 

 

Notes: The numbers listed for different insolvency ratios denote the occurrence frequency of financial distress within 30 years. 

 

Maximum claim level 1*RAC 0.90*RAC 0.8*RAC
E(PI) 0.7590 0.7150 0.6587 

E(MIRR) 0.1100 0.1096 0.1090 

E(SR) 0.3861 0.3859 0.3836 

insolvency ratio  > 0.5 2.0402 2.0272 2.0305 

insolvency ratio  > 1 0.9672 0.9550 0.8365 

insolvency ratio  > 1.5 0.5878 0.5318 0.1761 

insolvency ratio  > 2 0.4131 0.2316 0.0895 

Maximum claim level 1*RAC 0.90*RAC 0.8*RAC
E(PI) 0.6028 0.4631 0.3308 

E(MIRR) 0.1028 0.1017 0.1006 

E(SR) 0.3183 0.3064 0.3044 

insolvency ratio  > 0.5 3.1072 2.9665 2.9095 

insolvency ratio  > 1 1.5453 1.5154 0.7543 

insolvency ratio  > 1.5 1.042 0.6364 0.1612 

insolvency ratio  > 2 0.6023 0.2002 0.0853 



Table 6. Financial performance with CatBonds hedging against the NatCat risk under different maximum claims 

 

 

 

 
 

 

 

 

 

Notes: The numbers listed for different insolvency ratios denote the occurrence frequency of financial distress within 30 years 

 

Table 7. Financial performance with CatEPuts hedging against the NatCat risk under different maximum claims 

 

 

 

 

 

 

 

 

 

Notes: The numbers listed for different insolvency ratios denote the occurrence frequency of financial distress within 30 years. 

 

 

Maximum claim level 1*RAC 0.90*RAC 0.8*RAC

E(PI) 0.5142 0.5554 0.6035 

E(MIRR) 0.1024 0.1025 0.1027 

E(SR) 0.3115 0.3147 0.3164 

insolvency ratio  > 0.5 2.9698 2.9302 2.7554 

insolvency ratio  > 1 1.5808 1.5103 0.5543 

insolvency ratio  > 1.5 1.0681 0.6258 0.1130 

insolvency ratio  > 2 0.6952 0.2034 0.0621 

Maximum claim level 1*RAC 0.90*RAC 0.8*RAC
E(PI) 1.1661 1.2188 1.2588 

E(MIRR) 0.0001 0.0001 0.0001 

E(SR) 0.0004 0.0004 0.0003 

insolvency ratio rate  > 0.5 2.0373 1.8294 0.9325 

insolvency ratio rate  > 1 0.7584 0.2253 0.0242 

insolvency ratio rate  > 1.5 0.2256 0.0383 0.0051 

insolvency ratio rate  > 2 0.0986 0.0124 0.0053 
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Table 8. The standard deviation of premium payments for different terms and methods 

 

 

 

 

 

 

 

 

 

 

 
Notes: 1. nTP  denotes the yearly premium estimated by amortizing the n-year premium. 

2. r
nTP  denotes the yearly premium for the n-year policy with 1/n share of the maximum claim. 

3. * represents the mean of 100,000 independent replicates for means of premium volatilities within 30 years. 

4. ** represents the standard deviation of 100,000 independent replicates for standard deviations of premium volatilities within 30 years. 

 

Period of  
insurance coverage 

Technical premium Mean*  Standard deviation** 
 

1 TP 0.9604 0.0170 
2 

2TP  0.8345 0.0110 

2
rTP  0.8271 0.0109 

3 
3TP  0.6615 0.0087 

3
rTP  0.6561 0.0088 

4 
4TP  0.5720 0.0178 

4
rTP  0.5737 0.0174 

5 
5TP  0.4544 0.1599 

5
rTP  0.4472 0.1573 
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